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Abstract

Classic signal processing theory dictates that, in order to faithfully reconstruct a band-limited signal (e.g., an image),
the sampling rate must be at least twice the maximum frequency contained within the signal, i.e., the Nyquist
frequency. Recent developments in applied mathematics, however, have shown that it is often possible to reconstruct
signals sampled below the Nyquist rate. This new method of compressed sensing (CS) requires that the signal have a
concise and extremely dense representation in some mathematical basis. Magnetic resonance imaging (MRI) is
particularly well suited for CS approaches, owing to the flexibility of data collection in the spatial frequency
(Fourier) domain available in most MRI protocols. With custom CS acquisition and reconstruction strategies, one
can quickly obtain a small subset of the full data and then iteratively reconstruct images that are consistent with the
acquired data and sparse by some measure. Successful use of CS results in a substantial decrease in the time required
to collect an individual image. This extra time can then be harnessed to increase spatial resolution, temporal reso-
lution, signal-to-noise, or any combination of the three. In this article, we first review the salient features of CS theory
and then discuss the specific barriers confronting CS before it can be readily incorporated into clinical quantitative
MRI studies of cancer. We finally illustrate applications of the technique by describing examples of CS in dynamic
contrast-enhanced MRI and dynamic susceptibility contrast MRI.

Keywords: Compressed sensing; compressive sampling; compressive sensing; quantitative MRI; cancer; clinical trials; dynamic contrast-
enhanced; dynamic susceptibility contrast.

Introduction

There is a wide array of noninvasive quantitative imaging
biomarkers currently under development for incorpora-
tion into clinical trials. The hope of these emerging tech-
niques is that they will provide more sensitive and
specific information on the response of a range of can-
cers to therapy. Many of these promising methods cur-
rently require acquisition parameters that can be quite
demanding; more specifically, the spatial resolution, tem-
poral resolution, and signal-to-noise requirements can be
challenging to satisfy in the clinical setting. Thus, it is
imperative that the field develops and validates broadly
applicable image acquisition methods that can maximize
these 3 key imaging parameters. Unfortunately,

optimizing any 1 of these 3 parameters almost always
requires suboptimal settings for the other two. New meth-
ods are needed to alleviate this fundamental issue in the
acquisition of magnetic resonance (MR) images. One
very promising technique to address this challenge is
compressed sensing (CS).

MR imaging (MRI) has stood out in the field of CS as
one of the early successes. Since MR scanner measure-
ments are performed in the Fourier (spatial frequency)
domain, MR acquisitions are already fundamentally com-
patible with the random sampling in an incoherent basis
required by CS sensing theory. CS can reduce the data
collection burden of MRI sequences by a factor depen-
dent on the ability of the data to be compressed in some
domain. Any improvement in data collection efficiency
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can be translated into improvements in image quality and
the usefulness of derived quantitative parameters.

In the next section, we review the theory and early
applications of CS in several non-quantitative MRI tech-
niques. the third, we discuss special CS considerations
that need to be addressed before the approach can be
readily incorporated into cancer clinical trials and imple-
mented in advanced imaging centers. Finally, we discuss
2 immediate applications of CS to quantitative MRI
(qMRI), specifically dynamic contrast-enhanced (DCE)
MRI and dynamic susceptibility contrast (DSC) MRI.

CS in MRI

Theory of CS

CS describes the use of information about a signal�s
structure to allow complete signal reconstruction despite
incomplete sampling[1�3]. The prototypical example is a
structured time series signal that is subsampled with
respect to the Shannon�Nyquist sampling theorem,
which dictates a sampling rate of at least twice the largest
frequency component in the band-limited signal. The
signal structure that most often permits undersampling
is a sparse signal. A sparse signal is defined as a signal
that can be represented in some (possibly unknown)
mathematical basis with far fewer vector components
than in its natural basis (e.g., space, time, frequency).
We extend the scope of this terminology here to define
a compressible signal as one that has a sparse represen-
tation in which the signal may be approximated to high,
but not perfect, accuracy. A common example of signal
compression is the JPEG2000 encoding of photographic
images.

The reconstruction of these structured signals is usu-
ally performed with an iterative least-squares optimiza-
tion in which a sparsity-promoting norm serves as an
additional constraint, or regularizer. This formulation
prefers solutions that exhibit structure, and has been
recently proved to correctly reconstruct sparse signals
under certain circumstances[1�3]. The most common
sparsity-promoting norm is the l1-norm, defined as

xk k1�
X

i

jxij

which is the sum of magnitudes of the components of a
vector. This yields the common CS optimization problem

x̂ ¼ arg min
x

xk k1þ
l
2

Ax� bk k22

where x is a sparse representation of the data and A is a
measurement operator that transforms the sparse repre-
sentation to the data domain. This mathematical notation
is shorthand for the optimization problem to find the x
that minimizes the expression on the right-hand side. The
solution will strike a balance between the sparsity pro-
moted by the l1-norm and fidelity to the measured data b.

The l1-norm is compatible with a wide array of convex
optimization algorithms that can provide very rapidly
converging solutions, contributing to the popularity of
this formulation. This is important to MRI because the
dimensionality of the problem is of the order of the
number of voxels acquired, typically 106 or more, and
possibly much higher for dynamic or multiparametric
data sets. Hence almost all CS MRI problems require
large-scale optimization algorithms.

In MRI, the measurements are acquired in the spatial
frequency domain (Fourier transform domain), so the CS
problem can be reformulated as

x̂ ¼ arg min
x

xk k1þ
l
2

FuS�1x� b
�� ��2

2

where the measurement operator Fu is an undersampled
discrete Fourier transform, S�1 is the inverse of the spar-
sifying transform (takes the sparse representation into
the image domain), and the sparse representation x is
typically a wavelet or gradient decomposition. Note
that MR images are not sparse in any currently known
domain, so it is more accurate to refer to them as com-
pressible. Specifically, an anatomic MRI image can often
be represented with fewer wavelet or gradient coefficients
than the number of pixels in the image itself with only
minimal compression error. One of the primary determi-
nants of the compression error is the level of noise in the
image, measured in MRI by the signal-to-noise ratio
(SNR). Noise in MRI is approximately Gaussian, with
uniform power (white noise) in the Fourier domain and
Rician in the spatial domain magnitude image, so it lacks
large-scale structure and is thus difficult to represent by
any sparsifying basis.

CS usually requires a random measurement to be per-
formed. In MRI, the object is sampled in the Fourier
domain as a number of spatial frequency encoded read-
outs. These readouts may be linear, if the gradient is
constant, or curved, if the gradient is time varying.
However, the fundamental building block of all MRI
measurements is the readout �line,� which is understood
to refer to all arbitrary sampling trajectories of any curvi-
linear shape. Within this constraint, we are free to choose
the number of readouts and their associated trajectory
shapes. For a Cartesian acquisition scheme, the readouts
will be parallel lines spaced along 1 or 2 phase encode
directions. Fig. 1 shows an example of a simulated CS-
undersampled 2-dimensional (2D) Cartesian measure-
ment on a Shepp�Logan phantom. Random undersam-
pling according to CS then requires that a subset of these
lines be selected for sampling, with their spacing dictating
the field of view of the image and the maximum spatial
frequency encoded dictating the spatial resolution. The
missing phase-encoded lines lead to �ghosting� of image
power across the field of view. This incorrectly localized
power is then replaced by the CS reconstruction. For
radial and spiral readout trajectories, one may angularly
undersample by regularly discarding readout trajectory
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acquisition angles. Undersampling of a non-Cartesian
acquisition normally leads to complicated aliasing and
blurring artifacts in the image. However, such artifacts
can be removed by CS reconstruction. All of these

acquisition patterns have been successfully employed in
MR to achieve significant reductions in the data acquisi-
tion burden (e.g., Ref.[4]).

Initial applications of CS to MRI

Soon after the formalization of CS theory in 2006[1,2],
CS was applied to medical imaging. In fact, an example
of image reconstruction with a limited number of spatial
domain projections, theoretically similar to data obtain-
able in several tomographic medical imaging modalities
such as X-ray computed tomography (CT), single-photon
emission CT, positron emission tomography, and radial
MRI, was prominently presented by Cande‘s et al.[1].
Among all medical imaging modalities, MRI is the
most compatible with CS methodology because of the
flexibility in which MRI encodes and collects data
directly in the spatial frequency domain.

To date, the vast majority of CS-related biomedical
imaging research uses MRI. The first publication from
the MR community using CS theory appeared in 2007,[5]

and included CS-accelerated reconstructions of anatomic
brain images and contrast-enhanced MR angiography
(CE-MRA). Among MR applications, CE-MRA is partic-
ularly well suited for CS acceleration because of the
inherent image domain sparsity associated with bright
vessels with sharp edges superimposed on dark back-
ground tissue. The next MR application to harness CS
was dynamic cardiac MRI[6,7], which has traditionally
been a demanding application and a long-standing sub-
ject of MR research. Many techniques for fast scanning,
coherent undersampling, and various data-sharing meth-
ods had already been applied to dynamic cardiac MRI,
but CS opened a new avenue for data acquisition accel-
eration. Furthermore, the dynamic nature of cardiac MRI
yielded an additional dimension along which CS sparsity
constraints could be applied.

The immense potential of CS in MRI was quickly
recognized, and in 2008 it began to be applied to MR
spectroscopic imaging (MRSI) of hyperpolarized
13C[8,9]. By 2010 many more applications were reported.
Ajraoui et al.[10] applied CS to lung MRI using hyperpo-
larized helium. Doneva et al.[11] developed CS-acceler-
ated versions of traditionally time-consuming parametric
mapping of tissue parameters such as T1 and T2 in the
brain as well as accelerated abdominal fat-water ima-
ging[12]. Other cardiac applications such as cardiac per-
fusion[13] were explored. Jung and Ye[14] published a CS-
based method for motion estimation and compensation
of brain and cardiac MRI. Brain applications also con-
tinued to harness CS, including diffusion MRI[15].
Several investigators pursued new contrast-enhanced
MRI applications to combine with CS, such as 3-dimen-
sional (3D) DCE-MRI[16] and DCE-MRI of the
breast[17,18].

The rapid pace of CS development for MRI acceler-
ated further in 2011 from groups tackling challenges
such as joint reconstruction of multiple brain image

Figure 1 The essential feature of compressed sensing is
that part of the measurement in k-space is not performed.
Here we show the simulated two-dimensional (2D)
Cartesian undersampling of a Shepp�Logan phantom.
Since 2D MRI scans are restricted to either acquiring or
omitting entire readout lines, random rows of the data
have been discarded to create the undersampled k-space.
Then, after data acquisition, the missing data are replaced
by the results of an optimization that minimizes aliasing
artifacts in the reconstructed image. The fully sampled
image is shown in the top row, while the second through
bottom rows show the initial undersampling followed by
successive steps in the reconstruction. Here the constraint
on the image sparsity is the TV, or total variation, which is
the sum of pixel magnitudes in the gradient image.
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contrasts[19], motion compensated free-breathing coro-
nary MRI[20], whole-brain susceptibility mapping[21],
brain diffusion spectrum imaging[22], 4-dimensional con-
trast-enhanced MRA of brain and lower extremities[23],
low-contrast detectability in spine imaging[24], coronary
MRI[25], and brain functional connectivity[26]. Improved
anatomic imaging was targeted for brain and musculos-
keletal[27], cardiac[28], breast[29], and spine[30]. Despite
the widespread and growing exploration of CS in a broad
range of MR research applications, published reports
continue to be dominated by phantom and brain imaging,
which present fewer implementation and deployment
challenges, as well as by retrospective studies in which
fully sampled raw data sets are down-sampled after data
collection. More studies are needed to demonstrate
robust and high image quality in prospectively under-
sampled CS-accelerated scans of the challenging anatomy
characteristic of many clinical trial protocols, such as
body imaging, low-contrast anatomy, and targets likely
to be confounded by artifacts such as motion.

Considerations for incorporating CS
MRI into cancer clinical trials

Expectations for quantitative MRI in
clinical trials

Before we address the utilization of CS in clinical trial
imaging, we first outline the motivations for using qMRI
in clinical cancer trials. Clinical cancer trials are now at
an important crossroads, with focus shifting from estab-
lishing the basic rules and paradigms for response assess-
ment to critically examining current response assessment
tools for deficiencies and possible improvements.
Starting with the first clinical trials of chemotherapy for
solid tumors in the 1960s, an international consensus
slowly emerged around a basic response assessment par-
adigm using discrete response categories (complete
response, partial response, stable disease, progressive dis-
ease) defined by objective measurement rather than sub-
jective perception. Standards for solid tumor evaluation
were codified first in the World Health Organization cri-
teria[31] and subsequently in the Response Criteria for
Solid Tumors (RECIST)[32] with later modification as
RECIST 1.1[33]. Standards for hematologic malignancies
were also established and refined[34,35]. These criteria,
which focus on changes in lesion size measurement
over time, have become the standards for virtually all
clinical trials in which imaging-based response evaluation
is sought.

Recently, however, these size-based techniques have
come under increasing scrutiny, and several important
deficiencies have been brought to light. RECIST sets
out rigorous rules for defining which lesions can be mea-
sured and followed over time, explicitly excluding infil-
trative lesions or discrete lesions that are too small to
qualify for measurement. For lesions that do qualify as

target lesions for measurement and follow-up, it can be
difficult for the observer to choose a representative tumor
burden, and it can be challenging to measure lesions
along curved surfaces or abutting other organs or pathol-
ogy. Linear measurements alone may not adequately cap-
ture size changes in nonspherical or asymmetric lesions,
and both intraobserver and interobserver measurement
variability can be high, especially for heterogeneous
lesions or lesions with irregular borders[36].

However, perhaps the most important challenge to tra-
ditional size-based response assessment is the notion that
size measurement criteria may underestimate or fail to
capture the antitumor efficacy of some agents, especially
newer targeted therapies that produce a cytostatic rather
than a cytotoxic effect[37,38]. For some newer anticancer
agents, change in tumor size may lag weeks to months
behind tumor behavioral response or may never occur at
all. An exclusive focus on tumor size may also exclude
other potentially meaningful tumor characteristics,
including morphologic (density, necrosis, calcification,
heterogeneity), compositional (biochemical, molecular),
and functional (vascular perfusion, energy metabolism,
DNA synthesis) parameters.

Given these observations, there has been a recent surge
in experimental testing of quantitative imaging biomar-
kers for response assessment. Many of these newer bio-
markers are MRI-based, and use advanced imaging
techniques to interrogate tumors on a molecular and
functional level. Examples of MRI-based advanced
response biomarkers include DCE-MRI and DSC-MRI
for evaluation of tumor angiogenesis[39], diffusion-
weighted (DW)-MRI for evaluation of tumor cel-
lularity[40], MR spectroscopy for interrogation of
phospholipid metabolism associated with cell membrane
turnover[41], and blood-oxygen-level dependent (BOLD)-
MRI for evaluation of tumor hypoxia[42]. All of these
techniques offer quantitative information on tumor
response that could potentially be incorporated into
cancer clinical trials.

For these techniques to gain wide acceptance, certain
criteria must be fulfilled. First, newer biomarkers must be
validated in large clinical trials and must be shown to be
comparable or superior to currently accepted methods.
Newer biomarkers will be evaluated and compared with
current methods along 3 major effectiveness metrics: abil-
ity to predict the natural course of disease (prognostic
biomarkers), ability to predict sensitivity or resistance of
disease to particular treatments (predictive biomarkers),
and ability to identify treatment response or failure earlier
and/or more accurately than current methods (early
response biomarkers)[43]. CS techniques will likely play
an important role in facilitating biomarker development
by pushing the boundaries of spatial resolution, temporal
resolution, and SNR. Assessment of evolving quantitative
techniques will require validation of numerical thresh-
olds, demonstration of acceptable sensitivity and specifi-
city levels, and assessment of measurement error[44].
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Second, qMRI biomarkers must be standardized to
facilitate comparison of response data within a clinical
trial, between different sites in a multicenter trial, and
between different trials. This will require that MRI tech-
niques be robust and reproducible across different plat-
forms and equipment, and will require standardization of
data acquisition and analysis methods. It will be incum-
bent upon researchers to specify their methods and ima-
ging parameters with sufficient detail, and manufacturers
will be called upon to reveal and disseminate technical
details that previously may have been proprietary or con-
fidential. CS methods will undoubtedly increase the com-
plexity of the standardization process by introducing
additional variables that must be held constant over the
course of a trial and between trials. A number of organi-
zations (including the Quantitative Imaging Biomarkers
Alliance (QIBA) and the National Cancer Institute�s
Quantitative Imaging Network (QIN)) have been
formed in an effort to facilitate dialogue between scan
developers, clinicians, and manufacturers on standardiza-
tion efforts.

Third, qMRI biomarkers must be reasonable to imple-
ment from a cost and availability perspective. At present,
most imaging for cancer clinical trials is performed with
CT (with the notable exception of neuro-oncology). This
is most likely due to CT being cheaper and more widely
available, along with the perception that CT offers easier
image acquisition and fewer �moving parts� in terms of
imaging parameters to be specified in trial protocols. In
the near-term future, qMRI biomarkers will probably
evolve within specialized advanced imaging centers
linked to oncology cooperative groups and pharmaceuti-
cal industry partners; it will take much longer for these
techniques to become ready for mass consumption in
nonspecialized centers. Imaging researchers will there-
fore have to consider the most fruitful applications for
biomarker development, with an emphasis on techniques
for early-phase clinical trials that will facilitate earlier and
more efficient selection of candidate drug agents for pro-
motion to later-stage testing, as well as better identifica-
tion of patients who will benefit from a particular drug.

Predictability and accuracy of CS MRI

The addition of CS to a clinical imaging protocol can also
add unpredictability to the quality of the final image and
the exact error in the associated calculated quantitative
parameter maps[45]. The random nature of CS sampling
schemes leads to less predictable performance for a given
anatomic target. This is due directly to the magnitude of
k-space coefficients varying from target to target. If an
omitted coefficient would have had large amplitude for
one target but not another, the final quality of the recon-
structed image can vary greatly. For this reason, good CS
acquisition methods should be optimized for a range of
targets to be robust to these effects.

The SNR of a CS-based acquisition is a difficult ques-
tion to address. Depending on the clinical application, a

CS-enabled protocol may or may not improve the infor-
mation content available to clinicians. Using CS can lead
to both the loss of true signal (e.g., fine detail, producing
compression artifacts) and the addition of false signal
(aliased power from missing Fourier coefficients that
does not get completely eliminated during reconstruc-
tion.) On the other hand, CS can also eliminate true
noise by reducing low-magnitude coefficients in the
sparse domain during reconstruction, and it can add
true signal if the saving in acquisition time is used to
acquire additional data, such as by averaging repeated
data acquisitions or by acquiring new data at higher spa-
tial frequencies than in the original non-CS protocol.

For example, in MRA CS has been revolutionary, with
the ability to provide acceleration factors up to approxi-
mately 100-fold[46]. In MRA the goal is to create high-
contrast images that are extremely sparse under a gradi-
ent transformation. This technique can tolerate a loss of
fine features, because it requires only an essentially
binary map of vessels, and it benefits from the reduction
of system noise. Detection of cancer lesions, however,
may prove difficult with CS because of the potential for
loss of fine detail and contrast and the less predictable
nature of undersampling artifacts. While the image arti-
facts due to flow, motion, and off-resonance are relatively
easy to understand and disregard in the clinic, aliased
power attributable to a suboptimal iterative reconstruc-
tion or excessive CS acceleration may be less predictable
and harder to identify with any certainty. This could
place practical limits on the ability of CS to improve
some clinical protocols, and potentially reduce the sensi-
tivity and specificity of non-quantitative imaging.

In quantitative MRI, the effects of CS manifest in the
measurement error of quantitative parameters. This could
also affect the statistical significance of measured para-
meters, possibly leading to altered power and sample-size
requirements. Both clinical and research protocols must
address this important statistical effect. Voxel-level data
may have additional uncertainty added akin to the loss of
fine details, or it may have less uncertainty if the data are
accurately denoised. Quantitative parameters that have
been averaged over a region or a group of voxels, such
as tumor mean parameters, should have less error intro-
duced by CS and should benefit from the denoising
effect, since fine features will be averaged.

The loss of contrast caused by missing data in k-space
and sparsifying constraints[47] could produce systematic
error in quantitative parameter estimation, in at least
DCE[45] and possibly other qMRI methods. Care must
be taken to ensure that CS acquisition schemes minimize
contrast loss. One common strategy is to bias the sam-
pling densities in k-space toward low frequencies to
mimic the distribution of power in k-space, which for
anatomic images typically peaks at low spatial frequen-
cies and diminishes to a roughly constant level at high
frequencies. This sampling scheme ensures that the
majority of signal in the largest k-space coefficients is
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captured, thus maximizing the contrast of the recon-
structed image.

The design of CS MRI protocols must find the proper
balance of all of these concerns if they are to improve on
existing non-CS-enabled sequences. Many of these issues
should be easy to surmount with planning and optimiza-
tion, but only prospectively implemented applications
will be able to determine whether CS can provide a ben-
efit. Much work remains to be done to characterize
the competing effects on the accuracy and reliability of
CS-based qMRI.

Practical deployment of CS in the clinical
and research setting

The successful deployment of CS-accelerated MRI scans
requires solutions to 6 primary workflow components:
(1) CS sampling pattern design, (2) transmission and
storage of the CS sampling pattern onto the MR scanner
pulse sequence computer, (3) execution of the CS
sampling pattern by the MR scanner pulse sequence com-
puter, (4) transmission and storage of raw CS-accelerated
data (along with information about the CS sampling pat-
tern itself), (5) reconstruction of MR images from raw
data, and (6) transmission and storage of reconstructed
MR images into a desired image archive or database.
Fig. 2 illustrates this workflow along with data transfer
and storage requirements.

The first step in a CS-accelerated MRI workflow is the
selection of the CS sampling pattern. In some cases, it
may be possible to create a library of patterns in advance
that are compatible with a range of MRI scan types and
matrix sizes. However, the inherent flexibility of MRI for
the customization of the field of view and spatial

resolution, typically considered to be an advantage of
the modality, makes it impractical to design CS sampling
patterns in advance for all possible scans. Ultimately, the
most desirable solution is a hybrid approach in which a
large library of patterns is available along with the capa-
bility for on-demand generation of customized patterns.
On-demand generation of CS sampling patterns also
allows for customization of design algorithm parameters,
which a user may want to refine to achieve a different
balance of image quality characteristics.

Once a CS sampling pattern is selected, the details of
that pattern must be conveyed to the MR scanner�s pulse
sequence computer. In the case of conventional CS-accel-
erated Cartesian MRI, the information about the loca-
tions of the Fourier domain phase-encoded readout
lines is needed. A list of ky values for 2D scans or (ky,
kz) coordinates for 3D scans can be stored respectively as
simple arrays of integers, a binary array, or even bit-
masked unsigned integers if storage on the scanner hard-
ware is limited. A tradeoff between ease of readability for
users and compactness of storage must be made.
Efficiency of the CS sampling pattern representation is
more important as the number of patterns required for a
scan increase, such as if different patterns are used for
different 2D slices or 3D slabs, successive signal
averages, dynamic repetitions, diffusion b-values, cardiac
phase delays, MR echo times, or any other of many pos-
sible parameters that may be arrayed in a single MR
imaging series. CS sampling patterns are unlike other
simpler conventional sampling trajectories and patterns
that can be described deterministically without the need
for storing the entire pattern. In principle, knowing the
algorithm and the random seed used to generate a pattern
could allow reproduction of the pattern used, but this
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Figure 2 Workflow components required to implement compressed sensing (CS) acquisitions into an MRI environ-
ment. Times and speed are approximate to illustrate the order-of-magnitude requirements. Many components must
integrate into a balanced scheme in which no one component causes either a bandwidth or speed bottleneck, and
sufficient software must be in place to seamlessly perform complex iterative CS reconstructions on the images midstream
and to deposit the results into a clinical or research Picture Archiving and Communication System (PACS). DICOM,
Digital Imaging and Communications in Medicine.
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may prove to be too unreliable for clinical needs, and
storage of the raw pattern as part of the imaging data
induces little overheard.

After the CS sampling pattern is made available to the
MR pulse sequence computer, it must be incorporated
into the execution of MRI pulse sequence. Conventional
MRI protocols that sample Fourier domain data on a
Cartesian grid typically acquire data as separate phase-
encoded 1-dimensional (1D) lines. The location of the
1D frequency encoded readout in 2D or 3D k-space is
changed with every repetition time (TR) of the pulse
sequence. The order in which phase-encoded lines are
acquired can easily be altered by the adjustment of the
phase-encoding gradient waveform areas in each TR.
Such flexibility is ideal for the acquisition of unconven-
tional CS sampling patterns. Thus, standard spin-echo
and gradient-echo MRI protocols that acquire 1 phase
encode line per TR are relatively straightforward to
modify to support CS. Challenges arise for other
common MRI pulse sequence types that acquire multiple
phase encodes in each TR such as turbo spin-echo, turbo
field echo, gradient and spin-echo, and echo planar ima-
ging. These so-called fast imaging techniques are carefully
designed to satisfy gradient performance, pulse sequence
timing, and human subject safety constraints. Constraints
related to human subject safety are primarily limits on
radiofrequency (RF) power, specific absorption rate, and
peripheral nerve stimulation (PNS) caused by the rapid
switching of magnetic field gradients. PNS limits com-
monly restrict the maximum slew rate duty cycle per-
formed in fast MR imaging pulse sequences. It is
imperative to obey such hardware and safety constraints
to achieve the successful integration of CS sampling pat-
terns with fast imaging pulse sequences.

The next task is to offload the acquired data to a work-
station capable of performing a CS reconstruction. In
modern MRI scanners, raw data can require several giga-
bytes of storage for a single scan, and this is likely to
continue to increase. Multichannel-receive RF coils with
up to 32 channels are increasingly prevalent, although
with coil compression[48] the data can often be com-
pressed into 6�8 �virtual coils.� Given these sizes,
direct raw data transmission links will likely require
that the reconstruction workstation be placed in close
proximity to the MR scanner with a dedicated high-
speed connection to minimize data transfer delays. In
addition to high bandwidth, the reconstruction worksta-
tion would ideally provide a large amount of random
access memory (RAM) and a multicore central proces-
sing unit (CPU) or one or more graphics processing unit
(GPU) boards. Large amounts of RAM are required for
some CS reconstructions, especially those involving
large, multicoil, dynamic data sets and/or those using
low-rank constraints that require performing singular
value decompositions. Smaller reconstructions can bene-
fit from offloading onto GPU hardware for massively
parallel execution of the matrix operations required.

For matrix sizes common in MRI, GPU-based CS recon-
struction can yield acceleration of processing time by
25�30 times over CPU-based execution[49,50]. With the
appropriate hardware and reconstruction algorithm
choices, perhaps tailored to individual scans, reconstruc-
tion should not be a bottleneck to the clinical workflow.

Finally, the reconstructed MR images must be trans-
mitted and stored in a database such as a Picture
Archiving and Communication System (PACS) support-
ing the Digital Imaging and Communications in
Medicine (DICOM) standard. The MR scanner console
is typically the hub for image-data archival and is often
connected to a remote DICOM PACS. All MR scanner
consoles should be able to receive DICOM files; how-
ever, it may be impractical for the custom CS-accelerated
MRI reconstruction workstation to form complete
DICOM image files with all DICOM header metadata
defined. Instead, many MR scanner vendors provide
alternative routes for the reception of images into the
console�s database without the need for the DICOM
format. Often such secondary image-reception paths use
proprietary file formats unique to a scanner vendor.
Although knowledge of the file format is needed, the
proprietary formats typically require much fewer meta-
data compared with DICOM to associate the images
with the correct patient, study, and examination.
Second, the MR scanner console is already a multitasking
machine used by the scanner operator to define, plan,
and execute scanning protocols; view and process
images; and archive data. Any additional network con-
nectivity demand on the MR scanner console to receive
images coming from an additional reconstruction work-
station must be handled carefully so as not to cripple the
other functions of the console.

The described challenges for deployment of CS in the
clinical and research settings can be divided into obsta-
cles that primarily require an engineering solution and
problems that will likely remain areas for experimenta-
tion and optimization for years to come. Research proto-
types and commercial products from scanner
manufacturers to enable CS-accelerated MRI will
almost certainly have different software and hardware
solutions to overcome the somewhat mundane operations
of transmission/storage of the CS sampling pattern, exe-
cution of the sampling pattern in the pulse sequence, and
transmission/storage of specially reconstructed CS-accel-
erated MR images. Eventually the solutions to these
straightforward challenges will be essentially hardcoded
and built directly into the MR scanner. However, the
remaining hurdles of CS sampling pattern design and
reconstruction of images from raw CS-accelerated data
will likely evolve iteratively over time, based on real-world
feedback from radiologists and medical imaging physi-
cists. Initial embodiments for CS-accelerated MRI will
likely have many parameters to modify the sampling pat-
tern and to control the reconstruction algorithm.
However, flexibility and complexity should not
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overshadow the need for a simple and robust implemen-
tation accessible to a broad user base. The more familiar
clinicians and researchers are with the nature of CS-accel-
erated MRI, including the method�s promise, limitations,
and tradeoffs, the faster the field can converge on prag-
matic strategies to overcome the obstacles to the wide-
spread combination of CS with MRI.

Immediate quantitative applications
for CS

Dynamic contrast-enhanced MRI

DCE-MRI is an umbrella term used to describe a variety
of dynamic MRI techniques and analytical approaches,
including both qualitative and quantitative methods
applied to data acquired at high or low temporal resolu-
tion[11]. Common to all approaches is the serial acquisi-
tion of heavily T1-weighted images before, during, and
after the injection of a contrast agent. In the clinical set-
ting, great emphasis is placed on obtaining DCE-MRI
data at high spatial resolution, where it is frequently
noted that acquiring data at lower spatial resolution
leads to the possibility of missing smaller tumors and
mischaracterizing complex lesions[12�15]. Using current
methods, high spatial resolution necessitates lower tem-
poral resolution so that the resulting signal-intensity time
series can only be analyzed qualitatively or semiquanti-
tatively to characterize general curve-shape features (i.e.,
washout, plateau, or persistence)[16]. Unfortunately, high
temporal resolution DCE-MRI data are required[17,18] for
quantitative analysis whereby the dynamic signal-inten-
sity curves are fit to pharmacokinetic models to return
estimates of the volume transfer constant (termed Ktrans;
an estimate of tumor vessel blood flow and permeability),

the plasma volume fraction (vp), and the extravascular
extracellular volume fraction (ve). An example of this
can be seen in Fig. 3. Fig. 3a) shows a standard-of-care
dynamic breast examination and the associated signal-
intensity time course, while Fig. 3b shows a research-
based dynamic breast examination used for predicting
the response of an invasive ductal carcinoma to therapy.
Both images were acquired with heavily T1-weighted
spoiled gradient-echo sequences. In addition to the obvi-
ous differences (field of view, and presence or absence or
fat saturation), the key point to observe is that the image
on the left employed a 448� 448� 129 matrix for a
spatial resolution of 0.59 mm3 and required approxi-
mately 91 s to acquire, whereas the image on the right
employed a 192� 192� 20 matrix for a spatial resolu-
tion of 8.9 mm3 and required 16 s to acquire. Thus, there
is a large disparity of spatial and temporal resolution
between the dynamic scans acquired for typical stan-
dard-of-care assessment and that for a typical research
study.

In principle, quantitative analysis of DCE-MRI data
from a high temporal resolution MR acquisition should
yield the most detail on tumor vascular status.
Unfortunately, clinically acquired DCE-MRI data is not
optimized for quantitative modeling, thereby greatly
impeding the development---and translation---of new and
promising DCE-MRI approaches. To see this, observe
the down-sampled signal-intensity time course pictured
in Fig. 3b (dashed line); the native 16-s temporal resolu-
tion has been down-sampled to approximate that of the
clinical standard-of-care acquisition. When this is done,
much of the structure of the dynamic curve is lost,
thereby introducing significant errors in any subsequent
pharmacokinetic analysis. If data could be acquired
simultaneously with both high spatial and temporal

Figure 3 (a) An axial, bilateral, post-contrast, fat-saturated T1-weighted image with the tumor outlined in red on the left
breast. The corresponding signal-intensity time course is presented in (b). These represent fairly standard data available
from a clinical examination; while the spatial resolution is quite high (approximately, 0.59 mm3), the temporal resolution
is 91 s. (c, d) The analogous data (without fat saturation and with a sagittal field of view) available from a research
study; observe the lower spatial resolution (approximately 8.9 mm3). The temporal resolution is 16 s, thereby enabling
better characterization of the contrast uptake as needed for pharmacokinetic modeling. Of note is the red line in (d),
which shows (approximately) what the signal enhancement curve would look like if the temporal resolution was decreased
to that of the clinical scan on the left: the rapid initial rise is substantially underestimated. This simple example
elucidates the need for acquisition methods that can simultaneously provide high temporal and high spatial resolution
data.
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resolution, then DCE-MRI could provide images appro-
priate for both standard-of-care and research analyses.
This would substantially accelerate the development of
new, quantitative DCE-MRI methods and enable their
rapid transition to clinical use.

While some investigators are realizing the potential
power of CS to improve dynamic imaging (see, e.g.,
Refs,[25�27]), there has been extremely limited applica-
tion for striking a compromise between the competing
acquisition demands of clinical and research examina-
tions. As we[51] and others[52,53] have shown in prelimi-
nary (retrospective) investigations, it may be possible to
substantially improve the spatial and temporal resolution
at which quantitative imaging data are acquired with
almost no penalty to the accuracy of the parameters.
This has striking implications for the clinical utility of
dynamic MRI; in particular, the ability to return esti-
mates of physiologically meaningful pharmacokinetic
parameters at high spatial resolution for direct compari-
son of lesion morphology. There is little doubt that
improving spatial resolution in DCE-MRI without sacrifi-
cing temporal resolution would enhance our ability to
diagnose, assess, and predict the response of tumors to
therapy.

The simplest strategy for merging the clinical and
research goals would be to accelerate the acquisition of
the high spatial resolution clinical scan with CS by omit-
ting a large percentage of k-space from the acquisition
and reconstructing with a CS scheme that uses both spa-
tial and temporal constraints. If the dynamic scan time of
the clinical scan is roughly a factor of 6 longer than the
research scan (91 s vs 16 s), then a factor of 6 accelera-
tion from the CS technique would be sufficient to create
a protocol that would work for all patients and allow
research data to be collected simultaneously. Similar
levels of acceleration have already been demonstrated
in both[52,53].

Dynamic susceptibility contrast MRI

DSC-MRI involves the serial and rapid acquisition of T2-
or T2*-weighted images before, during, and after the
bolus injection of a contrast agent to assess hemody-
namic information (e.g., blood flow and blood volume)
in normal or tumor-bearing brain. Such methods require
sufficient temporal resolution to track the first pass of a
contrast agent through vessels (51.5 s per image)[54].
Consequently, the spatial resolution of DSC-MRI is typ-
ically lower than that used with DCE- or DWI-MRI,
which potentially limits its capability to adequately
assess hemodynamic heterogeneity within tumors. The
limited spatial resolution of DSC-MRI is particularly rel-
evant given its increasing use to track hemodynamic
changes following conventional or antiangiogenic
therapy[55,56].

Similarly, the integration of DSC-MRI derived blood
flow and blood volume maps into multiparametric analy-
sis methods, such as parametric response mapping[57],

could potentially be hindered by disparities in spatial
resolution between the different acquisition methods.
The high temporal resolution requirements also limit
the spatial coverage achieved by DSC-MRI scans, with
many routine clinical implementations (those lacking
phased-array technology or specialized sequences) only
able to image slices that encompass the tumor-bearing
region. Thus, there is a compelling need to develop
DSC-MRI acquisition methods capable of high spatial
and temporal resolution with large fields of view.

The use of CS acquisition schemes could also benefit
advanced DSC-MRI methods that aim to assess physio-
logic parameters beyond blood flow and blood volume.
Such methods typically require more acquisition time,
which limits their spatial resolution and coverage. For
example, the simultaneous acquisition of gradient and
spin-echo DSC-MRI data enables the evaluation of hemo-
dynamic parameters sensitive to the total vasculature and
microvasculature, respectively, as well as the measure-
ment of the mean vessel size in a voxel[58,59]. To
reduce the effects of contrast agent leakage in brain
tumors, DSC-MRI data is increasingly acquired using 2
or more gradient echoes[61,62]. Such an approach also
enables the quantification of the T1 contribution to the
DSC-MRI signal and the associated DCE-MRI para-
meters, Ktrans and ve

[62]. Similar to the DCE-MRI and
DW-MRI methods described earlier, these advanced
DSC-MRI methods could greatly benefit from increased
spatial resolution and tissue coverage in order to more
fully account for tumor spatial heterogeneity and better
characterize a tumor�s response to treatment.

CS reduces the data acquisition requirements for a
given spatial resolution, so if one considers examination
time to be fixed, the time saved may be used to acquire
additional, higher, spatial frequencies in k-space than
were included in the original acquisition, thereby increas-
ing the effective spatial resolution of the data. For
Cartesian acquisitions, this could be as simple as increas-
ing the maximum phase-encoded spatial frequency used,
leading to a higher effective resolution in the phase
encode direction(s). Care must be taken when increasing
the spatial resolution in the readout direction, since this
will necessitate a decrease in sampling time (increase in
sampling bandwidth) for each point and a consequent
loss of SNR. Balancing these considerations is part of
the planning and optimization process that must precede
CS-based acquisition strategies.

Discussion

The potential of CS in qMRI may be limited primarily by
how innovatively one uses prior information. For exam-
ple, in multiecho MRI scans, incorporating the similarity
between images of different echo times can allow accel-
eration of the scan. However, if the reconstruction of the
images is performed with inadequate a priori constraints,
the algorithm may produce blurred T2 maps or inaccurate
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T2 estimates. Designing a CS-optimized MRI protocol
then becomes an exercise in strategic measurement plan-
ning. Even the choice between advanced qMRI measure-
ment approaches, such as Look-Locker or DESPOT1 for
T1 mapping, is a factor to study regarding how well the
selected CS reconstruction algorithm can handle partial
data sets of each sequence.

One obvious future improvement to the reconstruction
side of CS MRI is the development of new priors that are
tailored to anatomic imaging with current state-of-the-art
MRI protocols. A useful prior (1) has compression arti-
facts with minimal influence on the diagnostic quality of
images and on the error in quantitative parameters; (2) is
robust to anatomic variation; (3) is relatively independent
of spatial resolution and image contrast; (4) is compati-
ble with parallel imaging, partial Fourier, and partial echo
techniques, so as to retain those already significant accel-
eration factors; and (5) fails gracefully in the presence of
increasing levels of noise.

The acquisition side of CS can be improved with better
understanding of the optimal way to sample k-space for a
given protocol. Tuning sampling patterns to be robust to
scan-to-scan variation and to anatomic variation will
improve clinical reliability. There is a plethora of sub-
sampled k-space acquisition trajectories, from Cartesian
to spiral, that have yet to be tested with CS to find the
best candidates in terms of data collection efficiency,
artifact behavior, and adequate spatial frequency
collection.

A better understanding of the limiting factors in stan-
dard qMRI protocols will pave the way for CS improve-
ments. Additional investigation of basic CS sparsity
constraints, such as total variation and wavelets, is
needed to determine which aspects of the more
common qMRI protocols are the best candidates for
acceleration. Most protocols are already well balanced
in terms of spatial resolution, temporal resolution, and
SNR. Thus, the reduction of data collection provided by
CS will require finding a new balance if one is to aim for
minimum error in measured quantitative parameters.

Finally, although almost all CS methods are designed
around l1-norm minimization, mathematically the l0-norm
is preferred in almost all situations because of its relaxed
sampling requirement and better performance.
Unfortunately, the l0-norm minimization problem is com-
putationally intractable, so various approximate methods
must be employed[63,64]. In the future, CS qMRI could
benefit from a shift toward l0 as the norm of choice if a
competitive workaround is found.

Conclusions

CS allows in many cases a reduction of the data collec-
tion burden in qMRI protocols, thereby freeing time to
collect additional data that directly improve the capabil-
ities of the technique. By incorporating CS into the acqui-
sition of MRI data, it may be possible to capture both

high spatial resolution data (for morphology and ana-
tomic assessment) and high temporal resolution, multi-
parametric data. This would represent a substantial
change in the field of cancer imaging, as current quanti-
tative imaging methods are not readily compatible with
clinical reality. For example, the competing demands of
clinical and research DCE-MRI studies may be able to be
addressed by CS methods, as well as the need to acquire
DSC-MRI data with increased spatial resolution. To
achieve the routine use of CS acceleration for quantita-
tive cancer imaging, a number technical issues related to
understanding the properties of CS and the practical
implementation must first be addressed, but these are
not insurmountable.

In conclusion, we believe that CS offers a reasonable
means to overcome fundamental barriers to the practical
deployment of quantitative imaging methods in clinical
trials and (ultimately) in clinical care.
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